

Applications:

Laser pulse chopping <300 ps to 10 ns.

Pulse pickeing a variable number of pulses.

Suitable for wavelengths up to 1064 nm

Standard specification summary:

Output amplitude 3.5kV into 50Ω with 70 to 100% adjustment

Pulse width adjustable <300ps to 10ns, 25ps steps

Built in terminator

Trigger delay approx 31 ns

Jitter <20ps peak to peak

Remote control by RS232 or Ethernet

Adjustable trigger threshold

Local and remote control of:-

Pulse width

Trigger enable/disable

Amplitude

Remote status monitoring of local control

Programmable power up configuration in EEPROM for stand alone operation`

110/240 V AC power

Low voltage unit

Positive output

These schematics do not show the sin² tranmission effects of the pockels cell and polarisers but does indicate the technique.

Specification:

- No of channels 1
- Output Amplitude approx 3.5kV* adjustable down to ~70% of max., into 50 Ω
- Polarity negative as standard
- Pulse length <300ps to 10ns in approx 25ps steps
- Rise time ~ 150 ps
- Fall time ~200ps + Pulse length / 10
- Trigger delay approx 31 ns fixed
- Trigger requirement \geq 2 volts into 50 Ω , <2ns risetime with adjustable threshold.
- Maximum repetition rate ≥ 100Hz
- Jitter <20ps
- Monitor output Proportional approx. x 1000 attenuation
- Trigger synch output
- Local display/control Leds indicating status
- Local/remote control switch
- LCD and keyboard allowing local control of most functions:
 - Trigger enable/disable
 - Pulse width setting
 - Trigger enable/disable
 - Pulse width
 - Status monitoring

Connectors

- Power input 110/240V AC
- Pulser output
- Trigger Sync output
- Proportional monitor output
- Trigger Input
- Inhibit Input
- Ethernet
- RS232

* Typical figures are ~ 3.8kV

Suitable Pockels cells

Currently all suitable cells use KD*P crystals although there are some good reasons why RTP would be a good choice. As yet there are no fast packages for RTP cells.

For KD*P rise time increases with aperture and number of crystals. A 6 mm single crystal cell is ~ 200ps. A 2 crystal 10 mm cell is ~ 350ps. The 2.5 mm cells are faster than our drivers.

Fast Pulse Technology, Inc.

1111 single crystal with 2.5 mm aperture

1112 double crystal with 2.5 mm aperture

1113 single crystal with 6 mm aperture

1071 single crystal with 10 mm aperture

1072 double crystal with 10 mm aperture

1073 single crystal with 16 mm aperture

1074 double crystal with 16 mm aperture

Leysop Ltd.

UPC68 single or double crystal, apertures 6mm and 8mm

The PSP1 is suitable for a double crystal device used in half wave mode at 1064nm, or a single crystal device used at half mode at 532nm.

Quarter wave requires half the votlage of half wave operation.

532nm requires about half the votlage of a 1064nm device.

Attenuators are available from Barth Electronics, Inc.

A 6dB type 142 attenuator is suitable for halving the voltage enabling the PSP1 to drive a double crystal cell half wave at both 532nm and 1064. Double wavelength cells are available. 142-NMFP-6B.

Notes:

The transmission of a suitably set up cell and crossed polarisers is given by

$$T = \sin^2(V/V_{\lambda/2} * 90^\circ)$$

With 2 cells and 3 polarisers and the same voltage on each cell this becomes

$$T = \sin^4(V/V_{\lambda/2} * 90^\circ)$$

where T = transmission

V = applied voltage

V_{1/2} = cell half wave voltage [~ 3.6kV for a double crystal KD*P cell]

KD*P is potassium dideuterium phosphate